FSH protects mouse granulosa cells from oxidative damage by repressing mitophagy

نویسندگان

  • Ming Shen
  • Yi Jiang
  • Zhiqiang Guan
  • Yan Cao
  • Shao-chen Sun
  • Honglin Liu
چکیده

Oxidative stress has been implicated in triggering granulosa cell (GC) death during follicular atresia. Recent studies suggested that follicle-stimulating hormone (FSH) has a pivotal role in protecting GCs from oxidative injury, although the exact mechanism remains largely unknown. Here, we report that FSH promotes GC survival by inhibiting oxidative stress-induced mitophagy. The loss of GC viability caused by oxidative stress was significantly reduced after FSH treatment, which was correlated with impaired activation of mitophagy upon oxidative stress. Compared with FSH treatment, blocking mitophagy displayed approximate preventive effect on oxidative stress-induced GC death, but FSH did not further restore viability of cells pretreated with mitophagy inhibitor. Importantly, FSH suppressed the induction of serine/threonine kinase PINK1 during oxidative stress. This inhibited the mitochondrial translocation of the E3 ligase Parkin, which is required for the subsequent clearance of mitochondria, and ultimately cell death via mitophagy. In addition, knocking down PINK1 using RNAi confirmed the role of the FSH-PINK1-Parkin-mitophagy pathway in regulating GC survival under oxidative conditions. These findings introduce a novel physiological function of FSH in protecting GCs against oxidative damage by targeting PINK1-Parkin-mediated mitophagy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-228: Altered Expression of Folliclestimulating Hormone Receptor and Luteinizing Hormone Receptor in Granulosa Cells from Women with Polycystic Ovary Syndrome

Background: Polycystic ovary syndrome (PCOS) is a common complex genetic endocrinopathy, affecting 5 - 10% of women at reproductive age. PCO granulosa cells seem to have abnormal responses to follicle- stimulating hormone (FSH). FSH is considered to be a pituitary glycoprotein that plays an important role during folliculogenesis as it promotes the proliferation and differentiation of granulosa ...

متن کامل

Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells

Recent studies reported the important role of autophagy in follicular development. However, the underlying molecular mechanisms remain elusive. In this study, we investigated the effect of follicle-stimulating hormone (FSH) on mouse granulosa cells (MGCs). Results indicated that autophagy was induced by FSH, which is known to be the dominant hormone regulating follicular development and granulo...

متن کامل

P-58: Secreted Frizzeled Related Protein Type-4as an Inducer of Apoptosis and Terminal Differentiationof Rat Granulosa Cells

Background: Involvement of Wnt proteins and one of its antagonist known as secreted Frizzled Related Protein type-4 (sFPRP-4) was reported in rodent ovarian follicular development. Other studies showed an ap- Abstracts of the 11th Royan International Congress on Reproductive Biomedicine 7 7 International Journal of Fertility & Sterility (IJFS), Vol 4, Suppl 1, Summer 2010 optotic-associated exp...

متن کامل

Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice

Melatonin protects luteinized granulosa cells (GCs) from oxidative stress in the follicle during ovulation. However, it is unclear in which cellular components (e.g., nuclei, mitochondria, or plasma membranes) melatonin works as an antioxidant. GCs from immature (3 wks) ICR mice were incubated with hydrogen peroxide (H2O2; 0.01, 0.1, 1, 10 mM) in the presence or absence of melatonin (100 μg/ml)...

متن کامل

Contribution of FSH and triiodothyronine to the development of circadian clocks during granulosa cell maturation.

The involvement of FSH and triiodothyronine (T(3)) in circadian clocks was investigated using immature granulosa cells of ovaries during the progress of cell maturation. Granulosa cells were prepared from preantral follicles of mouse Period2 (Per2)-dLuc reporter gene transgenic rats injected subcutaneously with the synthetic nonsteroidal estrogen diethylstilbestrol. Analysis of the cellular clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016